A lumped thermodynamic model of gas turbine blade cooling: prediction of first-stage blades temperature and cooling flow rates

نویسندگان

  • Roberta Masci
  • Enrico Sciubba
چکیده

Turbine Inlet Temperatures of 1500-2000K have become a sort of standard for most modern advanced applications. First-stage blades are obviously the most exposed components to such hot gases, and thus they need proper cooling. In the preliminary design of the blades and their cooling system, designers must rely on simple models that can be further refined at a later stage, in order to have an approximate but valuable set of guidelines and to reach a feasible first-order configuration. In this paper, a simple lumped thermodynamic model of blade cooling is proposed. It is based on mass/energy balances and heat transfer correlations and it predicts a one-dimensional temperature profile on the blade external surface along the chord for a given gas temperature profile, as well as the required cooling air flow rates to prevent blade material from creep. The greatest advantage of the model is that it can be easily adapted to any operating condition, process parameter and blade geometry, which makes it well suited to the last technological trends, namely the investigation of new cooling methods and alternative coolants instead of air. Therefore, the proposed model is expected to be a useful tool in the field of innovative gas turbine cycle analysis, replacing more computationally intensive and very time-consuming models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

Optimization of turbine blade cooling with the aim of overall turbine performance enhancement

In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...

متن کامل

An Experimental High - Temperature Turbine ( No . 1 : 26 ) • Part I . mThe Cooling Performance of a Set of Extruded Air - Cooled

Cooling characteristics are given in terms of the variation of average blade temperature at mid-span with cooling-flow rate, Reynolds number, gas/cooling-air absolute temperature ratio, and, for the rotor, gas-stream incidence. Chordwise and spanwise variations of blade temperature are also presented. Measured pressure-drop characteristics indicate that in a gas-turbine engine, with the cooling...

متن کامل

Cooling Turbine Blades using Exciting Boundary Layer

The present study is concerned with the effect of exciting boundary layer on cooling process in a gas-turbine blades. The cooling process is numerically investigated. Observations show cooling the first row of moving or stable blades leads to increase their life-time. Results show that minimum temperature in cooling line with exciting boundary layer is lower than without exciting. Using block i...

متن کامل

Aero-thermal-elasticity-materials Optimization of Cooled Gas Turbine Blades: Part I

The first lecture in this two-lecture sequence provides background and general concepts. The second lecture provides practical examples. The objective of these two lectures is to provide a modular design optimization tool description that will take into account interaction of the hot gas flow-field, heat transfer in the blade material, internal coolant flow-field, stresses and deformations of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016